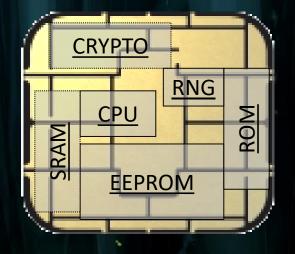
OpenCrypto Unchaining the JavaCard Ecosystem

Vasilios Mavroudis Doctoral Researcher, UCL

Who we are

Vasilios Mavroudis Doctoral Researcher, UCL Petr Svenda Assistant Professor, MUNI

George Danezis Professor, UCL


Dan Cvrcek Founder, EnigmaBridge

Contents

- 1. Smart Cards & Java Cards
- 2. What's the problem?
- 3. Our solution
- 4. Tools for developers
- 5. Future Work

SmartCards

- Pocket-sized card with integrated circuits embedded
- 8-32 bit CPU @ 10+MHz
- Cryptographic Coprocessor
- Persistent memory 32-150kB (EEPROM)
- Volatile fast RAM, usually <<10kB
- Secure Random Number Generator

SmartCards

Intended for physically unprotected environment

- Tamper protection
 - \rightarrow Tamper-evidence (visible if physically manipulated)
 - \rightarrow Tamper-resistance (can withstand physical attack)
 - \rightarrow Tamper-response (erase keys...)
- Protection against side-channel attacks (power, EM, fault)
- Periodic tests of TRNG functionality

Use Cases

- Payments ApplePay, Chip credit cards, ...
- Government ID cards, authentication, signing
- Cryptocurrencies wallet protection
- Internet of Things

Why we like smartcards

- Secure Small attack surface
- Certified to high levels of security (CC EAL5+, FIPS 140-2)
- Programmable secure execution environment
- Suitable for complicated business security transactions
- Inexpensive 100 JCs form a low-end HSM

Operating Systems

MultOS

- Multiple supported languages
- Native compilation
- Certified to high-levels
- Often used in bank cards

.NET for smartcards
Similar to JavaCard, but C#
Limited market penetration

JavaCard

Open platform from Sun/OracleApplets portable between cards

JAVACARD

History

Until 1996:

- Every major smart card vendor had a proprietary solution
- Smart card issuers were asking for interoperability between vendors

In 1997:

- The Java Card Forum was founded
- Sun Microsystems was invited as owner of the Java technology
- And smart card vendors became Java Card licensees

The Java Card Spec is born

Sun was responsible for managing:

- The Java Card Platform Specifications
- The reference implementation
- A compliance kit

Today, 20 years after:

- Oracle releases the Java Card specifications (VM, RE, API)
- and provides the SDK for applet development

A success!

20 Billion Java Cards sold in total
~2 Billion Javacards sold per year
1 Billion contactless cards in 2016

Common Use Cases:

- Telecommunications
- Payments
- Loyalty Cards

<u>JavaCardForum</u>

The API Specification

- Lists all supported crypto algorithms and the relevant methods
- Straightforward to use for developers
- Ensures interoperability between manufacturers
- Implementations are certified for functionality and security

A full ecosystem with laboratories & certification authorities

The API Specification

3.0.5 2015 - Diffie-Hellman modular exponentiation, RSA-3072, SHA3, plain ECDSA

3.0.4 2011 - DES MAC8 ISO9797.

3.0.1 2009 - SHA-224, SHA2 for all signature algorithms

2.2.2 2006 - SHA-256, SHA-384, SHA-512, ISO9796-2, HMAC, Korean SEED

Wikipedia

2.2.0 2002 - EC Diffie-Hellman, ECC keys, AES, RSA with variable key length

2.1.1 2000 - RSA without padding.

Bad Omens I

Compliance

Vendors implement a subset of the API specification:
No list of algorithms supported by each card
The specific card must be tested by the developers

Examples

- RMI introduced in Java Card Spec. 2.2 (2003)
- Java Card 3.0 Connected (2009)

 \rightarrow never implemented

 \rightarrow never adopted

- Annotation framework for security interoperability \rightarrow not adopted

Bad Omens II

Interoperability

- Most cards run a single applet
- Most applets written & tested for a single card
- Most applets run only on a single vendor's cards

Three years late

- 1 year to develop the new platform after the release of a specification
- 1 year to get functionality and security certification
- 1 year to produce and deploy the cards

Walled Gardens

Proprietary APIs

- Additional classes offering various desirable features
- Newer Algorithms, Math, Elliptic Curve Operations
- Vendor specific, interoperability is lost
- Only for large customers
- Small dev houses rarely gain access
- Very protective: NDAs, Very limited info on the internet

CRYPTO

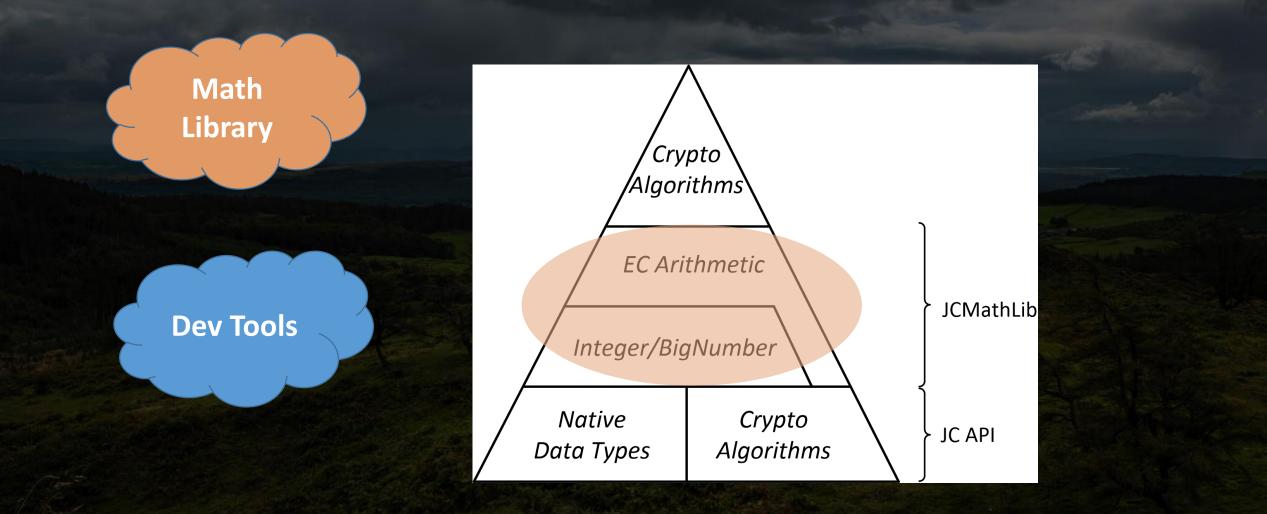
O P E N

Motivation

- 1. Time-to-Market: Speed-up availability of new cryptographic functions
- 2. Interoperability: provide a consistent library for different JC platforms
- 3. Learning curve: Make Java Card accessible to Java programmers

A new landscape:

- IoT needs a platform with these security characteristics
- Lots of small dev. houses
- They want to build various new things
- Java devs in awe → No Integers, Primitive Garbage Collection


Things People Already Built!

- Store and compute on PGP private key
- Bitcoin hardware wallet
- Generate one-time passwords
- 2 factor authentication
- Store disk encryption keys
- SSH keys secure storage

What if they had access to the full power of the cards?

List of JavaCard open-source apps: <u>https://github.com/EnigmaBridge/javacard-curated-list</u>

The OpenCrypto Project

Related Work

Project	Features	Details
OV-Chip 2.0	Big Natural Class	 Uses CPU Card-specific Not maintained
JCMath	Similar to Java BigInteger	Part of projectSource code dump
E-Verification	MutableBigInteger Class	Part of projectSource code dump

JCMath Lib

ClassJavaJC Spec.JCJCRealityMathLibIntegers✓✓✓BigNumber✓✓✓EC Curve✓✓✓EC Point✓✓

OpencryptoJC.org/JCMathLib

JCMath Lib

Integer Addition Subtraction Multiplication Division Modulo Exponentiation

BigNumber Addition (+Modular) Subtract (+Modular) Multiplication (+Modular) Division Exponentiation (+Modular) ++, --

EC Arithmetic Point Negation Point Addition Point Subtraction Scalar Multiplication

package opencrypto.jcmathlib;

// NOTE: very simple EC usage example - no CLA/INS, no communication with host...
public void process(APDU apdu) {
 if (selectingApplet()) { return; }

// Generate first point at random
point1.randomize();
// Set second point to predefined value
point2.setW(ECPOINT, (short) 0, (short) ECPOINT.length);
// Add two points together
point1.add(point2);
// Multiply point by large scalar
point1.multiplication(SCALAR, (short) 0, (short) SCALAR.length);

Convenience Features

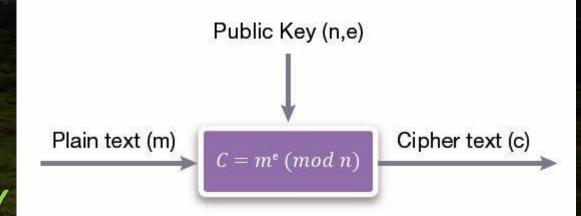
We handle the low-level/dirty stuff

- Unified memory management of shared objects
- Safe reuse of pre-allocated arrays:
 - \rightarrow Resource Locking
 - \rightarrow Automated erasure
- Adaptive data placement (RAM/EEPROM) for:
 - \rightarrow performance
 - \rightarrow memory usage

Building the Building Blocks

CPU is programmable! \rightarrow But very slow X Coprocessor is fast! \rightarrow No direct access X

Hybrid solution


- Abuse API calls known to use the coprocessor

- CPU for everything else

Simple Example

Modular Exponentiation with Big Numbers

- Very slow to run on the CPU
- Any relevant calls in the API?
 - \rightarrow RSA Encryption \checkmark
 - \rightarrow Uses the coprocessor \checkmark
 - \rightarrow Limitations on the modulo size X
 - \rightarrow *Modulo* on CPU has decent speed \checkmark

EC Point-scalar multiplication

 $\begin{array}{ccc} Co \\ Proc \end{array} \longrightarrow & \mathbf{x} \longrightarrow & CPU \longrightarrow & \mathbf{y}^2 \longrightarrow & \begin{array}{c} Co \\ Proc \end{array} \longrightarrow & Done! \end{array}$

- 1. Input scalar x and point P
- 2. Abuse ECDH key exchange to get [x,+y,-y] (co-processor)
- 3. Compute the two candidate points P, P' (CPU)
- 4. Sign with scalar x as priv key
- 5. Try to verify with P as pub key
- 6. If it works \rightarrow It's P
 - else \rightarrow It's P'
- 7. return P or P'

- (co-processor)
- (co-processor)

Performance

ECPoint operations (256b)	NXP J2E081	NXP J2D081	G&D Smartcafe 6.0
randomize()	296 ms	245 ms	503 ms
add(256b)	2995 ms	2892 ms	2747 ms
negation()	112 ms	109 ms	94 ms
multiplication(256b)	4157 ms	3981 ms	3854 ms

Performance

Bignat operations	NXP J2E081	NXP J2D081	G&D Smartcafe 6.0
add(256b)	7 ms	10 ms	10 ms
subtract(256b)	14 ms	22 ms	11 ms
multiplication(256b)	112 ms	113 ms	117 ms
mod(256b)	30 ms	31 ms	23 ms
mod_add(256b, 256b)	71 ms	72 ms	56 ms
mod_mult(256b, 256b)	872 ms	855 ms	921 ms
mod_exp(2, 256b)	766 ms	697 ms	667 ms

Profiler

- Speed optimization of on-card code notoriously difficult
- No free performance profiler available
- OpencryptoJC.org/JCProfiler

How-to:

- 1. Insert generic performance "traps" into source-code
- 2. Run automatic processor to create helper code for analysis
- 3. The profiler executes the target operation multiple times
- 4. Annotates the code with the measured timings

JCAIgTest.org

JCSystem.getMaxCommitCapacity()	2.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
javacardx.apdu.ExtendedLength	introduced in JC ver.				c3							c10			c13	c14			c17							c24			c2
Extended APDU	2.2.2	-	no	no	-	-	-	-	-	-	-	-	-	-	-	no	-	-	-	-	no	no	no	no	no	no	-	-	-
javacardx.crypto.Cipher	introduced in JC ver.	c0		c2	c3	c4	c5		c7			c10	c11	c12	c13	c14	c15	c16	c17		c19	c20	c21	c22	c23	c24		c26	c2
ALG_DES_CBC_NOPAD	≤2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	ye
ALG_DES_CBC_ISO9797_M1	≤2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	no	yes	yes	ye
ALG_DES_CBC_ISO9797_M2	≤2.1	yes	yes	yes	yes	yes	1					1	Maria	aa lau	or a	of c	and	ls ir	$\sim d\sigma$	$t \sim k$		~						yes	ye
ALG_DES_CBC_PKCS5	≤2.1	no	no	no	yes	yes	1						nui	11D	егс	лс	diu	ю п	l ud	Itak	Jasi	е						no	nc
ALG_DES_ECB_NOPAD	≤2.1	yes	yes	yes	yes	yes	1																					yes	ye
ALG_DES_ECB_ISO9797_M1	≤2.1	yes	yes	yes	yes	yes																						yes	ye
ALG_DES_ECB_ISO9797_M2	≤2.1	yes	yes	yes	yes	yes	70) —																			-	yes	ye
ALG_DES_ECB_PKCS5	≤2.1	no	no	no	yes	yes	2																					no	nc
ALG_RSA_ISO14888	≤2.1	no	no	no	no	no																						no	nc
ALG_RSA_PKCS1	≤2.1	yes	yes	yes	yes	yes	60	1																				yes	ye
ALG_RSA_ISO9796	≤2.1	no	no	no	no	no	00																					no	ye
ALG_RSA_NOPAD	2.1.1	yes	yes	yes	yes	yes	1																					yes	ye
	220			suspicious																								suspicious	
ALG_AES_BLOCK_128_CBC_NOPAD	2.2.0	yes	no	yes	yes	yes	_ 5() _																			_	yes	ye
ALG_AES_BLOCK_128_ECB_NOPAD	2.2.0	yes	no	suspicious yes	yes	yes																						suspicious yes	ye
ALG_RSA_PKCS1_OAEP	2.2.0	no	no	no	no	no																						no	nc
ALG_KOREAN_SEED_ECB_NOPAD	2.2.2	yes	no	no	yes	yes	4() —																			-	no	nc
ALG_KOREAN_SEED_CBC_NOPAD	2.2.2	yes	no	no	yes	yes	1																					no	nc
ALG_AES_BLOCK_192_CBC_NOPAD	3.0.1	no	-	-	no	no	- 30	۱ —																_		_	_	no	nc
ALG_AES_BLOCK_192_ECB_NOPAD	3.0.1	no		-	no	no																						no	nc
ALG_AES_BLOCK_256_CBC_NOPAD	3.0.1	no	-	-	no	no																						no	nc
ALG_AES_BLOCK_256_ECB_NOPAD	3.0.1	no	-	-	no	no																						no	nc
ALG_AES_CBC_ISO9797_M1	3.0.1	no		-	yes	no	, 20) —																_			- 1	no	nc
ALG_AES_CBC_ISO9797_M2	3.0.1	no	-	-	yes	no	,																					no	nc
ALG_AES_CBC_PKCS5	3.0.1	no	-	-	yes	no																						no	nc
ALG_AES_ECB_ISO9797_M1	3.0.1	no	-	-	yes	no	10	٦																				no	no
ALG_AES_ECB_ISO9797_M2	3.0.1	no	-	-	yes	no	<u>, т</u> ,	/																			_	no	nc
ALG_AES_ECB_PKC \$5	3.0.1	no	-	-	yes	no																						no	nc
javacard.crypto.Signature	introduced in JC ver.	c0	c1	c2	c3	c4) —																			. 1	c26	c2
ALG_DES_MAC4_NOPAD	≤2.1	no	no	yes	yes	yes		5																				yes	ye
ALG_DES_MAC8_NOPAD	≤2.1	yes	yes	yes	yes	yes			2007	7	2008	- 2	009	- 20	010	- 20	11	203	12	201	3	2014	1	2015	2	016		yes	ye
ALG_DES_MAC4_ISO9797_M1	≤2.1	по	no	yes	yes	yes	yes	yes	yes	yes	yes	yes	no	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	no	yes	yes	ye
ALG_DES_MAC8_ISO9797_M1	≤2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	no	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	no	yes	yes	ye
ALG_DES_MAC4_ISO9797_M2	≤2.1	no	no	yes	yes	yes	yes	yes	yes	yes	yes	yes	no	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	no	yes	yes	ye
ALG_DES_MAC8_ISO9797_M2	≤2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	no	yes	yes	ye
ALG DES MAC4 PKCS5	≤2.1	no	no	no	yes	yes	yes	yes	yes	yes	yes	yes	no	yes	yes	yes	yes	yes	no	yes	no	no	no	no	no	no	no	no	nc
											1.2					,													

Development Cycle

- 1. Find a suitable card using our coverage table
- 2. Code using Eclipse, Netbeans, IntelliJ IDEA
- 3. Debugging using JCardSim simulator
- 4. Applet is built using Maven, ant-javacard scripts
- 5. Upload to real card using GlobalPlatformPro
- 6. Performance Profiling

More to come...

- Semi-automated porting to JavaCard
 - \rightarrow JavaCard even more accessible to Java devs (e.g., IoT)
 - → Endpoint security: Java crypto code safer if run in smartcards

- JCCrypto Lib
 - → A collection of crypto algorithm implementations
 - \rightarrow No 3-year lag anymore
 - \rightarrow Call for contributions!

Takeaways

1. JCMath Library

- \rightarrow Developers now free to build
- \rightarrow Examples & Documentation
- 2. Performance Profiler
- 3. JC API Coverage & Performance Survey
 - \rightarrow 60+ Cards
 - \rightarrow 230 Algorithms

OpenCrypto Unchaining the JavaCard Ecosystem

OpenCryptoJC.org